13 research outputs found

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Modelling the role of catastrophe, crossover and Katanin in the self organisation of cortical microtubules

    No full text
    Cortical microtubules can form ordered arrays through interactions among themselves. When an incident microtubule collides with a barrier microtubule it may entrain if below a certain angle of collision. Else it undergoes collision induced catastrophe (CIC) or crosses over the barrier microtubule. It has been proposed that katanin, a microtubule severing protein, contributes to ordering by severing the overlying microtubule at these crossover sites. We present a 3-state computational model to show how the probability of CIC against crossover affects microtubule ordering and how katanin interacts with this. We observe the highest order at 0.8 CIC and a rapid drop in order as CIC decreases past 0.5. Enabling katanin at 0.4 CIC increases the order towards 0.8 CIC levels, however, as the CIC drops further towards 0.1 CIC the time needed for katanin to localise and sever the microtubule and form an ordered array greatly decreases and does not appear biologically feasible. Therefore we propose that in cells that exhibit a very low level of CIC but have a clear ordered microtubule array, that katanin and microtubule-to-microtubule interactions are not sufficient and other factors are needed to develop an ordered microtubule array

    Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants.

    No full text
    Remorins form a superfamily of plant-specific plasma membrane/lipid-raft-associated proteins of unknown structure and function. Using specific antibodies, we localized tomato remorin 1 to apical tissues, leaf primordia and vascular traces. The deduced remorin protein sequence contains a predicted coiled coil-domain, suggesting its participation in protein-protein interactions. Circular dichroism revealed that recombinant potato remorin contains an alpha-helical region that forms a functional coiled-coil domain. Electron microscopy of purified preparations of four different recombinant remorins, one from potato, two divergent isologs from tomato, and one from Arabidopsis thaliana , demonstrated that the proteins form highly similar filamentous structures. The diameters of the negatively-stained filaments ranged from 4.6-7.4 nm for potato remorin 1, 4.3-6.2 nm for tomato remorin 1, 5.7-7.5 nm for tomato remorin 2, and 5.7-8.0 nm for Arabidopsis Dbp. Highly polymerized remorin 1 was detected in glutaraldehyde-crosslinked tomato plasma membrane preparations and a population of the protein was immunolocalized in tomato root tips to structures associated with discrete regions of the plasma membrane
    corecore